中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/94575
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41942672      在线人数 : 1099
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94575


    题名: 基於輕量級語義分割網路結合自動生成像素級標籤技術的晶圓圖混合型缺陷模式識別;Wafer Map Mixed-Type Defect Pattern Recognition based on Lightweight Semantic Segmentation Network with Automatic Pixel-Level Label Generation Technique
    作者: 洪庭幃;Hong, Ting-Wei
    贡献者: 工業管理研究所
    关键词: 晶圓缺陷辨識;語意分割;資料生成;wafer defect recognition;semantic segmentation;data generation
    日期: 2024-07-23
    上传时间: 2024-10-09 15:17:15 (UTC+8)
    出版者: 國立中央大學
    摘要: 晶圓製程包含數百個複雜步驟,完成後需進行晶片測試。識別晶圓圖中的缺陷模式有助於找出缺陷原因並優化製程,例如CMP可能導致中心、刮痕、邊緣等缺陷。迅速準確地辨識缺陷模式對提高產量至關重要。而近期在晶圓圖缺陷模式識別領域應用深度學習的研究大大加速了缺陷檢測的過程。然而當不同的缺陷混合在同一塊晶圓上時,混合型晶圓缺陷相較單類別晶圓缺陷複雜,對於晶圓缺陷模式的識別非常困難,而使用語意分割可以有效的辨識混合晶圓缺陷,但語意分割的訓練資料要求像素級晶圓圖標籤。故在本文中,我們提出了一個自動晶圓圖標籤生成技術,並通過使用語義分割方法在晶圓圖上分割不同的缺陷模式。;The wafer fabrication process involves hundreds of complex steps, followed by chip testing upon completion. Identifying defect patterns in wafer maps helps identify the causes of defects and optimize the process. For example, Chemical Mechanical Polishing (CMP) may lead to defects such as center defects, scratches, and edge defects due to particle aggregation or pad hardening during the CMP process. Rapid and accurate identification of defect patterns is crucial for improving yield. Recent research applying deep learning to defect pattern recognition in wafer maps has significantly accelerated the defect detection process. However, when different defects are mixed on the same wafer, mixed-type wafer defects are more complex compared to single-type defects, making defect pattern recognition challenging. Semantic segmentation can effectively identify mixed wafer defects, but training data for semantic segmentation requires pixel-level wafer map labels. Therefore, in this study, we propose an automatic wafer map labeling technique and segment different defect patterns on wafer maps using semantic segmentation.
    显示于类别:[工業管理研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML53检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明