中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/91846
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41947693      在线人数 : 1314
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/91846


    题名: 以混合整數規劃優化國道服務區太陽能隔音牆與儲能裝置之設置以滿足電動車充電
    作者: 呂冠賢;Lu, Kuan-Hsien
    贡献者: 工業管理研究所
    关键词: 永續發展;再生能源;太陽能隔音牆;儲能;電動車充電;Sustainability;Renewable Energy;PVNBs;Energy Storage;EV charging
    日期: 2023-07-18
    上传时间: 2024-09-19 14:37:02 (UTC+8)
    出版者: 國立中央大學
    摘要: 全球暖化、氣候變遷是需要長期投入改善的議題,氣候行動亦為聯合國永續發展核
    心目標之一,再生能源、儲能裝置、電動車等領域近年在技術與規模上快速成長,且在
    未來仍是重要的發展項目。電動車本身於行駛時有較低的碳排放,然而目前仍存在充電
    站未普及以及電力來源之碳排放較高的問題,本研究探討以最小化成本規劃太陽能隔音
    牆與儲能裝置之設置,以滿足服務區內電動車充電需求。根據充電需求規劃太陽能模組
    以及儲能裝置,進而降低電動車電力來源之碳排放量。
    本研究以最小化成本為目標,考量太陽能發電成本、儲能成本、購電成本及碳費,
    並根據相關數據如服務區充電需求、日射量與太陽能發電效率、太陽能隔音牆面積、可
    建置總面積等參數建立數學模型並求得最佳解。本研究於python中使用gurobi套件進
    行建模與求解。最佳解包含太陽能隔音牆之裝置容量、儲能裝置至儲能容量以及向外部
    購電之總電量。研究結果顯示,在裝設裝置容量為1.99MW的太陽能隔音牆、儲能容量
    為680kWh 的儲能裝置並向外部購電438,220度,得以最小化成本6,319,272元滿足一年
    當中服務區內電動車充電需求,並且以太陽能電力作為總使用電力之60%。實驗結果顯
    示在因春季與夏季日照強度較高,太陽能模組的發電量及使用率較高,可降低向外部購
    電的依賴並減緩夏季時的電網壓力。儲能裝置的使用上,主要於每日上午儲電,並於每
    日下午使用庫存電力供給。另外,本研究亦針對成本進行調整並分析,發現碳費的變動
    對總成本與使用太陽能使用率有較強的影響力,較高的碳費傾向有更高的總成本以及更
    高的太陽能使用率。;This research focuses on addressing global warming and climate change through
    sustainable solutions. It investigates the deployment of Photovoltaic Noise Barriers (PVNBs)
    and Battery energy storage system (BESS) to meet the charging demand of electric vehicles
    within a freeway service area. The objective is to minimize costs, considering solar power
    generation, energy storage, power purchase, and carbon pricing.
    A mathematical model is developed based on relevant data such as charging demand, solar
    radiation levels, solar power generation efficiency, size of PVNBs, and available installation
    space. The model is solved using Gurobi package in Python. The optimal solution includes the
    capacity of PVNBs, storage capacity of BESS, and the total electricity purchased from the grid.
    By installing PVNBs with a capacity of 1.99 MW, BESS of 680 kWh, and purchasing 438,220
    kWh of electricity from the grid, the charging demand of electric vehicles within the service
    area can be met at a minimized cost of NTD 6,319,272 over a year. About 60% of the charging
    demand is powered by solar energy. Solar power generation and utilization are higher during
    the spring and summer. This reduces reliance on grid electricity and eases grid pressure during
    the summer. For BESS, the system mainly stores the surplus energy in the morning and uses it
    in the afternoon. The study also examines the cost sensitivity and reveals that changes in carbon
    pricing significantly impact the total cost and solar energy utilization. Higher carbon pricing
    leads to higher total costs and greater utilization of solar energy. Overall, this research provides
    insights into the optimal design of a solar-powered EV charging station. The results highlight
    the effectiveness of PVNBs and BESS in meeting charging demands sustainably and reducing
    reliance on the grid.
    显示于类别:[工業管理研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML24检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明