English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41944206      線上人數 : 736
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/88090


    題名: 具機台合不兼容系列時間窗口限制與適度決定之平行批次處理問題;Scheduling Parallel Batch Processing Machines with Incompatible Families, Time Window Con-straints and Machine Eligibility Determination
    作者: 阮恆江英;Anh, Nguyen Hang Giang
    貢獻者: 工業管理研究所
    關鍵詞: 平行批次處理;時間窗口限制;機台合適度決定;分解法;儲蓄法;遺傳算法;Parallel batch processing machines;Time window constraints;Machine eligibility determination;Decomposition approach;Savings method;Genetic algorithm
    日期: 2022-05-10
    上傳時間: 2022-07-13 17:57:51 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究考慮了一個並行批量處理機器的問題,以在任意批量、不兼容系列、開始時間窗口的約束和適度決定下達到最小化製造時間。本研究首先通過混合整數程序化模型來格式化問題,並且也提供了所研究問題的下界。但因爲研究問題為NP-Hard且因應實務上須能解決大的問題,本研究亦將發展了一種基於分解的啟發式算法和進化算法,以便在計算時間作為一個側重點時獲得大規模問題的近似最優解。二維節約函數被引入來量化時間和容量空間被浪費的值。對於遺傳算法,我們提出了用於編碼的二維矩陣和一維表示,以及適當的二維交叉和突變以產生後代。此外,此遺傳算法旨在改善基於已開發分解的啟發式算法的解決方案品質,該啟發式被用作已開發遺傳算法的初始解。計算實驗表明,所提出的啟發式算法對於小規模問題的執行表現良好,並且可以在合理的計算時間內有效地處理大規模問題。此外,計算結果還表明,本研究提出的啟發式算法在答案品質 (Solution quality) 方面優於文獻中現有的啟發式算法。;This study considers a parallel batch processing machines problem to minimize the makespan under constraints of arbitrary lot sizes, incompatible families, start time windows, and machine eligibility determination. We first formulate the problem by a mixed-integer programming model and a lower bound for the studied problem is also provided. Due to the NP-hardness of the problem, we then develop a decomposition-based heuristic and an evolutionary algorithm to obtain a near-optimal solution for large-scale problems when computational time is a concern. A two-dimensional saving function is introduced to quantify the value of time and capacity space wasted. For the genetic algorithm, we propose a two-dimensional matrix and one-dimensional representation for encoding, and appropriate two-dimensional crossovers as well as mutations to generate offspring. In addition, the genetic algorithm aims to improve the quality of the solution found by the developed decomposition-based heuristic which is used as an initial solution for the developed genetic algorithm. Computational experiments show that the proposed heuristic algorithms perform well for small-size problems and can deal with large-scale problems efficiently within a reasonable computational time. Moreover, computational results also indicate that our proposed heuristics outperform an existing heuristic from the literature in terms of solution quality.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML72檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明