中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/85671
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41950794      在线人数 : 681
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/85671


    题名: 分區式揀貨系統之訂單批次化問題研究
    作者: 蔡冠右;Kuan-You, Tsai
    贡献者: 工業管理研究所
    关键词: 物流中心;分區式揀貨系統;訂單批次化;訂單批次選取;動態式揀貨路徑;Distribution Center;Zone Picking System;Order Batching;Order Batch Selection;Dynamic Order Picking Route
    日期: 2021-07-28
    上传时间: 2021-12-07 11:13:30 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,網路購物迅速發展,「宅經濟」大流行,促使消費管道從原先實體店面轉移到電商平台。購物型態的改變也提升了物流的難度,網購商家主打的24小時快速到貨及與日俱增的配送量考驗著物流中心的產能與效率,快速反應消費者的需求已是物流中心必備的條件,如何在滿足客戶需求的同時降低成本成為物流中心面臨的一大考驗。
    物流中心的作業流程可歸類為下列九項:進貨、搬運、儲存、盤點、訂單、揀貨、補貨、出貨、輸配送,其中揀貨作業是最具客戶敏感度的一環,同時也是耗費作業量以及人力最大的一項工作。目前大多數的物流中心是屬於「勞力密集」的產業,揀貨作業占物流中心運營總成本的50-75%,為物流中心「成本最高的作業流程」,且揀貨作業時間佔整個物流作業時間約30-40%。是故,如何優化揀貨流程為物流中心的首要目標。
    以往,普遍物流中心的揀貨方式為「個別揀取」,即一位揀貨員一次揀取一張訂單,此法的優點是很簡單,缺點則是較沒有效率。對此,常見的解決方式為「批次揀取」,意即將相似訂單合併處理,一個揀貨員同時對多張相似訂單進行揀貨,減少揀貨作業時間。訂單批次化的優劣對批次揀貨有關鍵影響,好的訂單批次化方法對揀貨效率有顯著幫助。
    然而,過往的訂單批次化文獻,研究環境相對單一,鮮少探討物流業常見的「分區式揀貨系統」。此揀貨系統具有揀貨行走路線流暢的優點,缺點為動線複雜,搭配優秀的揀貨策略顯得格外重要。基於上述原因,本研究將針對分區式揀貨系統中的揀貨策略進行研究,探討訂單批次化問題。此外,為了更進一步提升揀貨效率,本研究同時探討訂單批次選取問題與動態式揀貨路徑問題,與訂單批次化問題共同探討,找出最適合的揀貨策略搭配,並期望透過完整的模擬實驗與績效分析,增加對此類問題的了解,對未來的類似研究,也將有相對之貢獻。
    ;In recent years, online shopping has developed rapidly, and the "Stay-at-Home Economy" has prompted the shift of consumer channels from the retailer to e-commerce platforms. Changes in shopping patterns have also increased the difficulty of logistics. The 24-hour fast delivery and increasing delivery volume of online shopping test the logistic efficiency. Quick response to consumer needs is a necessary ability to distribution centers.
    Among all operation of the distribution center, order picking is the most workload and manpower operation. At present, most distribution centers are "labor-intensive" industry. Order picking account for about 50-75% of the total operating costs, and the order picking time is about 30-40% of the total operating time. Therefore, how to optimize the order picking process is the primary goal of the distribution center.
    In the past, the general order picking method was "individual picking", that is, one picker picks one order at a time. The advantage of this method is that it is very simple, but the disadvantage is that it is less efficient. In this regard, the common solution is "batch picking", which means that similar orders are merged to same order batch and opereted together, so a picker can pick multiple similar orders at the same time, reducing the picking time. The pros and cons of order batching have a key impact on batch picking.
    However, in the past literature on order batching, the research environment was relatively single and seldom discussed the "zone picking system". This picking system has the advantages of a smooth picking route, but the disadvantage is that the picking traffic flow is complicated, and it is important to match an excellent picking strategy. Based on the above reasons, this research will study the picking strategy in the zone picking system, and mainly discuss the order batching problem. In addition, in order to further improve the efficiency, this research also discusses the order batch selection problem and dynamic order picking routing problem, and find the most suitable picking strategy. It is hoped that through complete simulation experiments and statistical analysis, it will increase the understanding of order picking issues.
    显示于类别:[工業管理研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML113检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明