English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41945104      線上人數 : 1324
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/83169


    題名: 在限制計算成本下異質性隨機克利金元模型與迴歸元模型之比較;Comparison of Stochastic Kriging Metamodel and Regression Metamodel in Simulation:The Heteroscedastic Variance Case with Constraint Computing Budget
    作者: 詹薏蓁;Chan, Yi-Chen
    貢獻者: 工業管理研究所
    關鍵詞: 多項式迴歸;克利金法;隨機克利金法;元模型;Polynomial Regression;Kriging Model;Stochastic Kriging;Metamodel
    日期: 2020-07-29
    上傳時間: 2020-09-02 15:04:26 (UTC+8)
    出版者: 國立中央大學
    摘要: 元模型為解釋模型的模型,透過執行隨機模擬,模擬模型其輸出值提供了元模型所需的估計值。在隨機模擬實驗中,多項式迴歸與隨機克利金法皆為常見元模型建模方法。其中迴歸是找一個函數,使此函數盡量符合已知點的資料,此函數稱作迴歸函數;而隨機克利金法是為隨機模擬實驗開發的一種元建模方法,在克利金法的基礎上開發新的模型設計。隨機克利金法將模型輸出性能的不確定性與隨機模擬中固有的取樣不確定性區分開來,因此隨機克利金模型既要描述隨機模擬中原有的固有不確定性,又要考慮未知輸出的外部不確定性。
    本篇論文比較了隨機克利金元模型與迴歸兩種元模型,在限制其計算成本的條件下,具異質性變異數輸出的模擬模型,不需經過複雜的轉換運算使其變異數趨於相似,便可直接用以建立元模型。在這項研究中,通過模擬實驗的設計和分析,經過共計100次的實驗,透過數據分析的結果,證明所提出的隨機克利金元模型相對於競爭方法,在限制條件下其模型估計性能更優於迴歸元模型。
    ;Metamodel is a model for explaining the model. By running a stochastic simulation, we can know the number specified by the random model but cannot be analyzed and calculated. The output value of the simulation model provides the estimated value required by the metamodel. Polynomial Regression and stochastic kriging are both common metamodeling methods in stochastic simulation experiments. Regression method is to find a function that could match the known data as much as possible, this function called regression function. Another method is a metamodeling method developed for random simulation experiments named stochastic kriging. The design of the model is based on the kriging method, this method characterized both the intrinsic uncertainty inherent in a stochastic simulation and the extrinsic uncertainty about the unknown response surface.
    In this study, we compared two different metamodels, stochastic kriging metamodel and regression metamodel. Under the condition of limiting calculation budget, the simulation model with heterogeneous variable output does not need to undergo complex conversion operations to make the variation tend to be similar. It can be used directly to build a metamodel. Through the design and analysis of simulation experiments, after a total of one hundred experiments, and through the results of data analysis, it is proved that stochastic kriging metamodel has the better performance of estimated.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML190檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明