中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/62874
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41959816      線上人數 : 1215
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/62874


    題名: 在一個有多維不對稱性的架構下比較Cournot與Bertrand均衡;Comparing Cournot and Bertrand Equilibria in a Setting with Multi-Dimensional Asymmetry
    作者: 張明宗
    貢獻者: 國立中央大學產業經濟研究所
    關鍵詞: 經濟學
    日期: 2013-12-01
    上傳時間: 2014-03-17 14:08:15 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10208~10307;We will compare Cournot and Bertrand equilibria in a duopoly setting where the asymmetry between the two firms is multi-dimensional. Zanchettin (2006) and Chang and Peng (2012) obtain some interesting results for a duopoly setting where the asymmetry between the two firms has a dimension of one. Therefore, we particularly aim at analyzing whether these results still hold in the multi-dimensional setting. Zanchettin (2006) demonstrates that a standard result obtained by Singh and Vives (1984) is reversed when the degree of the asymmetry between the two firms is high enough. This means that it is not without loss of generality for Singh and Vives (1984) to restrict the degree of the asymmetry between the two firms by assuming that the so called ``primary outputs” are positive. This suggests that it also could be restrictive to assume that the asymmetry between the two firms has a dimension of one. It thus might be important to relax this assumption.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[產業經濟研究所] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML417檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明