中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/62498
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41948030      Online Users : 1395
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/62498


    Title: 利用肌肉前驅細胞來探討體細胞多能性誘發的機制;Using Myogenic Precursor Cells to Elucidate the Mechanisms of Induced Pluripotency of Somatic Cells
    Authors: 陳盛良
    Contributors: 國立中央大學生命科學系
    Keywords: 基礎醫學;生物技術(醫)
    Date: 2012-12-01
    Issue Date: 2014-03-17 11:34:09 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 研究期間:10108~10207;A great hurdle to cell mediated tissue regeneration therapy is the possible immune rejection of the graft by the host. Therefore, adopting autologous stem cells in this therapy becomes very critical to its success. Unfortunately, stem cells from the patient’s body are difficult to isolated and expand ex vivo. However, if the patient’s somatic cells, which are in large amount and easy to get, can be reprogrammed and induced to trans-differentiate into precursors of target cell types in vitro, then both the cell number and immune rejected problems can be solved. In recent years, several groups have found that over-expression of Oct4 and Sox2 together with either Klf4 and c-Myc or Nanog and Lin 28 can induce pluripotent stem (iPS ) cells from mouse and human fibroblasts with germline-competency. One of the studies has successfully induced iPS cells from human fibroblasts by using only Oct4 and Sox2 supplemented with a histone deacetylase inhibitor, valproic acid (VPA), although the efficiency is low (0.001%) as compared to that of using 4 factors (0.1%). These studies strongly demonstrated that reprogramming somatic cells to stem cells is feasible and it can be achieved either by simply introducing 2-4 stem cell-specific factors into somatic cells or in conjunction with pluripotency-promoting compounds, such as VPA. To date, several methods, including retroviral and adenoviral transduction and plasmid transfection, have been employed to over-express these iPS factors Both retroviral transduction and plasmid transfection raised the concern of insertion mutagenesis and introduction of ecotopic DNA. Adenoviral transduction avoids the insertion mutagenesis, but unfortunately, the efficiency achieved by this approach is relatively low. Therefore, new approaches need to be taken to avoid the problem of insertion mutagenesis and in the mean time increase the iPS induction efficiency. Skeletal muscle constitutes about 40% of adult body weight and is one of the most accessible tissues in a patient’s body. It is highly plastic and can regenerate readily upon physical and chemical damages due to the existence of large number of stem cells in this tissue. Taking advantage of its large amount of stem cells and easy accessibility, skeletal muscle stem cells can serve as a reliable source of autologous stem cells for reprogramming. Therefore the specific aims of this study are: 1. Reprogramming myogenic precursor cells by (vector-dependent) over-expressing iPS factors and analyzing their expression profile 2. Screening of pluripotency promoting small compounds 3. Generating transgenic mice carrying Oct4 promoter driven GFPneo reporter 4. Establishing a vector-free reprogramming procedure
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Life Science] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML413View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明