中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/11013
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41961978      Online Users : 1468
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/11013


    Title: 應用群集方式找出具有高價值的顧客群之研究;Applying clustering method to find the high value customers
    Authors: 李元富;Yuan-Fu Lee
    Contributors: 工業管理研究所
    Keywords: RFMP分析模型;倒傳遞類神經網路;群集;顧客價值;Clustering;Customer value;Back-propagating neural networks;RFMP analysis model
    Date: 2004-06-17
    Issue Date: 2009-09-22 14:12:05 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在微利的時代中,企業投入大量資源增加對顧客的瞭解並與顧客建立良好關係,並界定不同價值的顧客群。企業以不同的產品、不同的通路滿足不同區隔顧客的個別需求,並在關鍵時刻,持續的與不同層次的顧客溝通,強化顧客的價值貢獻,希望提高顧客滿意度(Customer Satisfaction)及顧客忠誠度(Customer Loyalty)。本研究從顧客對公司的貢獻價值方向,提出以RFMP分析模型的「最近一次的購買日期」(R)、「一段期間內的購買頻率」(F)、「一段期間內的購買金額」(M)與「一段期間內的促銷產品購買頻率」(P)為基礎,以顧客歷史交易資料進行顧客價值分析,應用倒傳遞類神經網路技術於個別顧客的購買歷史記錄進行分析,針對個別顧客的購買行為進行預測,建立顧客價值指標做為顧客價值的預測模型 。最後利用發展的FN_DBSCAN群集的演算法找出一群有數量限制的高價值顧客群。 In tiny profit years, enterprises are investing many resources to increase understanding of customers and establish good relationship with customers, and mark off different value customers. Enterprises use different products, different place to satisfied the different needs in separate customers. In a critical moment, keep on communicating with different level customers, to strengthen the contribution of customers, in a hope to raise customer satisfaction and customer royalty. In this thesis, based on the RFMP(Recency, Frequency, Monetary, Promotion) analysis model, we use customer history transaction data to perform customer value analysis. Apply back-propagating neural networks technology to analyse the individual customer history transaction data and forecast the consume behavior, to establish the customer value index as customer value prediction model. Finally, we use the FN_DBSCAN algorithm that developed in the thesis to find the fixed number of prior customers.
    Appears in Collections:[Graduate Institute of Industrial Management] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明